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I N T R O D U C T I O N  

Knowledge of hydrodynamic aspects of relative motion between bubbles or drops and a continuous 
phase is a prerequisite to understanding and rationalizing many transport processes encountered 
in chemical and environmental operations. Examples of such operations include gas-liquid 
contacting, liquid liquid extraction, emulsion polymerization and production of paints and liquid 
detergents. The drag experienced by the liquid drop and the information around the drop which 
could be used to obtain the mass transfer rate between the two phases are of central importance 
in all these applications. In the past, the variational principles were used to study the non- 
Newtonian flow over a swarm of drops and/or bubbles. Among others, Jarzebski & Malinowski 
(1986) used them to estimate the upper and lower bounds on the drag coefficient for a power law 
fluid and for a Carreau fluid (Jarzebski & Malinowski 1987a). Gummalam e t  al. have used them 
to predict the rising velocity of spherical bubbles in a power law fluid (Gummalam & Chhabra 
1987) and in a Carreau fluid (Gummalam e t  al. 1988). In spite of their widespread utility, the 
variational results suffer from the drawback that the predictions are sensitive to the choice of trial 
functions used in the analysis. Experience also shows that the bounds diverge for higher degrees 
of non-Newtonian behavior and therefore, are not very useful for strongly non-Newtonian fluids. 
Jarzebski & Malinowski (1987b) obtained the solutions for the power law flow over a swarm of 
drops by linearizing the governing equations approximately. Their analysis, however, is limited to 
mildly shear-thinning fluids because of the approximations involved. All the aforementioned 
theoretical studies have employed the free surface cell model (Happel 1958) to simplify the 
interactions between drops. Zhu & Deng (1994) have recently used the free surface model to 
simulate numerically the flow behavior of a power law fluid over a swarm of droplets. Although 
the power law model provides the simplest representation of the shear thinning behavior, its 
inability to predict a constant viscosity in the limit of vanishingly small shear rates has raised some 
doubts as to its appropriateness for describing the creeping flow with stagnation points. 

Papers published to date provide the following: (1) approximate, closed-form solutions to the 
problem, obtained using the linearization technique and hence applicable only for weakly 
pseudoplastic fluids; (2) variational bound-form solutions, obtained by choosing the trial function 
which may suffer from errors; and (3) numerical solutions for power law fluids which are unable 
to predict the zero shear viscosity and infinite shear viscosity most non-Newtonian fluids are known 
to exhibit. In this note, a numerical solution for the slow motion o f a  Carreau fluid over Newtonian 
spherical drops or bubbles with a non-rigid interface is provided to assess the effects of a wide range 
of shear thinning behaviors, holdups and viscosity ratios on the drag and the mass transfer rate 
and to evaluate the effects of the Newtonian plateau seen in the viscosity functions of most 
non-Newtonian shear thinning fluids. 
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S T A T E M E N T  OF PROBLEM AND N U M E R I C A L  I M P L E M E N T A T I O N  

Consider the steady, creeping and axisymmetric flow of an incompressible Carreau fluid past a 
swarm of monosized spherical Newtonian drops of radius R with a superficial velocity V0. Happel's 
cell model assumes that each drop is surrounded by a hypothetical spherical envelope whose surface 
is frictionless and whose radius is given by R~ = Rq~-"3, where q~ is the overall average volumetric 
holdup (or content) of drops. In a spherical coordinate system, the governing equations are: 

E*Zt / j*  = ¢o* ~ sin 0 [1] 

[fl +(1 --/3)(I + 2)]H*)'-1)/2]E'2(O9o* ~ sin 0) + (n -- 1)22(1 -- /3)(1 +2),2[Io)* (n 3),2 

FSI - I*~  8H* 1 8 ( o ) * ~ s i n 0 ) ] = 2 2 2 ( l - - / 3 ) ( 1 - n ) F ( ~ , 0 ) s i n 0  
Xk 8~ 8 ~ ( ° 9 * ~ s i n 0 ) +  8 ~ 2 8 0  A 

E'27 j* = ~o*~ sin 0 

E*2(co* ~ sin 0) = 0 

[2] 

[3] 

[4] 

where, 

8 2 sinO 8 { 1 ~.~ 
E ' 2 - 8 ~ 2  ~ - ~ - ~  \sinOSOJ 

a I 3)/2{y/'1. an* a n o * \ q  F ( ¢ , 0 ) = ~  ( 1+222H*)  '"- \ , ~ ( ~ o , o - ~ - + D ~ o o ) o ~ - ) J  

The relevant boundary conditions are: 
on the drop surface, 

[5] 

O I . , . : r , , , ( ,  3)¢:{m, 8H* Dc'~o)oOFI*)] 
30 ( l + z t ' " ° '  '~ '- ' ,~Oo~-~ + ~ fO [6] 

vS,(1,  O) = v~)~(1, O) = 0 

C*o(l, 0) = v~)i(1, 0) 

")]21-1".&(n I)/21F~* (i,O)=o~D~o)i(1 O) [fl + (1 --/3)(1 + ~,. ~o I J~'(~0)o 

[7a] 

[7b] 

[7c] 

and on the surface of the outer sphere, 

v ~)o (s, 0) = cos 0 [Sa] 

, D(eo)o(S, 0) = 0 [8b] 

and vl~)i* V(o)~* remain finite as ~ tends to zero. 
Subscripts "i"  and "o"  indicate the quantities are calculated for inner dispersed Newtonian phase 

and outer continuous non-Newtonian phase, respectively. Superscript "*" denotes the quantities 
in dimensionless form. ~ and 0 are dimensionless spherical co-ordinates; 7 ~ and ~o are stream 
function and vorticity, respectively; v,) is a physical component of  velocity; 2 and n are parameters 
in the Carreau fluid model; II is the second invariant of rate of deformation tensor D,j); q0 and 
ri~ are zero shear and infinite shear viscosities of fluids; ot = #~rio, fl = ri~ ~rio, s = Rt /R = q~ ~..3; and 

is the viscosity of  dispersed Newtonian fluids. The above equations can be obtained in similar 
way with Zhu & Deng (1994) by using Carreau fluid model in lieu of power law fluid model. 

The flow drag on the drop is given as: 

[fo f: ; FD = 2~R 2 ( - -p+z t , ) ) ,=RcosOsinOdO--  (zl,0)), R sin2 0 d0 [9] 

where z~,,~ and z(~0) are the physical components of the deviatoric stress tensor. 
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The correction factor for the drag coefficient for non-Newtonian behavior is given by: 

CD 
YD = [10] 

24/Re 

where CD is the drag coefficient and Reynolds number, Re, is defined as Re = pVo2R/qo. 
A theoretical prediction of the mass transfer coefficient around a drop can be obtained by using 

the thin concentration boundary layer approximation of  Lochiei & Calderbank 0964) as follows: 

[2-],/2~ I= }1/2 
Sh/Pe m - ( - t (o)0)~ = 1 sin2 0 dO [11] 

kZ~J [a0 

The use of this equation is restricted to high Peclet number and low Reynolds number regime. 
The finite difference technique is used to obtain numerical solutions of the governing equations 

[1]-[4]. An iteration procedure is used to treat the difficulties arising from the boundary conditions 
as follows (Zhu & Deng 1994): 

(1) Let m = 0, estimate an initial value of  the azimuthal velocity at the interface, v(0)i(1,* 0)(°) 

(2) Let 
V~o)o (1, O) (') = v(~)i(1, O) (m). [12] 

(3) Set up the discretized system for [1] and [2] and solve this system under the boundary 
conditions [7a], [12] and [8] until it has converged. 

(4) If 

1113 + (1 fl)(1 + 222Fl*/m)) ("-),'2 , -- ]D(¢0)o(1, O) (m) - ~D~0)i(1, 0)(")tl ~< < HD~0)i(1, 0)(m)[[ 

for some prescribed tolerance q ,  then terminate the iteration, otherwise. 
(5) Let 

, 0)(m ) 1 D(eo)i(1, = - [fl + (1 -- fl)(1 + 2j.  21-lo*(m)) (n l)/2]D~o)o(1 , O) (m). [13] 

(6) Set up the discretized system for [3] and [4] and solve this system under the boundary 
conditions [7a] and [13] until it has converged. 

(7) Let m--+m + 1. 
(8) Repeat steps (2)-(6). 

In the numerical calculations, the value of tolerance, q ,  has been reduced gradually until the 
further reduction of q changed the final results of drag coefficient by no more than 0.01%. The 
final value of q used in the calculations is 5 x 10 -5. The grid size used in the calculations has been 
determined by a trial-and-error procedure in a similar way and it is found to be mainly dependent 
on ~ as well as fluid parameters 2 and n. Finer mesh has to be used for more shear thinning fluid 
and consequently the computational time increases significantly. The grid has been found to be only 
weakly dependent on the value of O. The increase of • has two implications. Firstly, it causes fluids 
to undergo a higher level of  shearing and consequently a finer grid is required to simulate the 
greater gradient of  flow variables over the domain caused by a stronger shearing action. On the 
other hand, increase of  drop content decreases the size of  the flow region and therefore the number 
of  grids required decreases accordingly. Consequently, the value of • has less significant influence 
as a result of two nullifying mechanisms. The number of grids has to be increased with the 
increasing value of ~. The tolerance for the convergence used in solving the governing equations 
[1] and [2] in step 3 and [3] and [4] in step 6 is 10 -5. 

RESULTS AND DISCUSSION 

The effect of  the dimensionless characteristic time 2 on the drag is shown in figure l(a) for a 
single drop and in figure l(b) for a swarm of drops (holdup q) -- 0.4), in terms of the correction 
factor YD, for different values of  the flow behavior index n when ~ = 1.0 and fl = 0.0. Included in 
the same figure are the upper bounds of Jarzebski & Malinowski's solutions (1987a) based on the 

IJMF 21t%~)  
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variational principles. There is an appreciable discrepancy between the results predicted by the 
numerical technique and the upper bounds of the variational solutions. Apparently, the upper 
bounds of the variational solutions overestimate the drag experienced by the fluid drops, especially 
in the cases of  very strong non-Newtonian flow behavior. The results of  the drag coefficient q~ = 0.4 
obtained from the present computat ion are given in figure 2 for the viscosity ratio parameter  ~ equal 
to 0.1 and 10, and fl taking the values of  0 and 0.1, respectively. 

Numerical predictions of  the Sherwood number normalized by Newtonian results are plotted in 
figure 3 as functions of the flow behavior index n at different values of  the viscosity ratio parameters 
for q~ = 0.4. Included in the same figure are the predictions of  Jarzebski & Malinowski (1987a) 
based on the variational principles. The appreciable discrepancy between the present numerical 
solutions and the solutions of  the variational principles has been observed for high values of the 
viscosity ratio parameters. The flow behavior index has very little influence on the mass transfer 
rate for intermediate values of  the holdup when the viscosity ratio parameter  is small (swarm of 
bubbles in Carreau fluids as its extreme case) and the mass transfer rate decreases with the decrease 
in the flow behavior index when the viscosity ratio parameter  is large (assemblage of solid spheres 
as its extreme case). 

The results obtained using power law fluids of previous study were also included in figure 2 in 
comparison with those obtained using Carreau fluids in the present study. All dimensionless 
quantities for power law fluids were defined based on the value of viscosity at some characteristic 
second invariant of  the rate of deformation tensor (Zhu & Deng 1994). In order to facilitate the 
comparison between the present results and the previous results of  power law fluids, the same 
characteristic second invariant of the rate of  deformation tensor has been used to make the two 
results consistent and comparable. An inspection of these comparisons reveals that a remarkable 
discrepancy exists between these two predictions. The smaller the value of ), the bigger the 
discrepancy. This discrepancy is presumably due to the inability of power fluid to predict zero shear 
viscosity. It is interesting to notice that the power law fluid underestimated the flow drag compared 

Y o  

3 . 0  ( a )  ~-o.o C . . . .  " 'el " ~  
. . . . . .  , - o . ,  

. . . .  _- > 7 o  

1.0 o / 
" - ' -  o 

0.5 X=IO o ~ ' ~  ~ - d>=0.4, o~OA 
o 

0.0 
0.0 0:2 0[4 0:6 0:8 n 1.o 

Yo 

Figure 2 

15.0 

12.0 

9.0 

6.0 

3.0 

0.0 

(b) )-o.o carreau Modal .Pf~ 
. . . . . .  ~-o., /7 i  

x-lo ~ ¢~,0.4, o-I0 
, , - i • g • 

0 . 0  0 . 2  0 . 4  0 . 6  018 n 1 . 0  



B R I E F  C O M M U N I C A T I O N  939 

1.0 

7 
0.9 

2 o.8 

o .r  
o 

0 .  

o.6 

1.o 

o / / ,-0.4. ~-I0 
a-,fl,/" o / ,-o 

/o  / =,= 
• ° 

0.7 0.9 n 1.1 

0.9 

.~ o.8 
r~ 

0 .7  
o 
O. 

~ o .s  

0.5 0.5 
0.5 0.5 

y~ 

' o / ' / / .  , ,o Z . ,  

0 .7  0 .9  n 1.1 

F igu re  3 

with Carreau fluids. Also, when the ratio between viscosities of  Newtonian dispersed drops and 
non-Newtonian continuous phase is small (~ = 0 for the limiting case of  a swarm of bubbles in 
non-Newtonian fluids), the large discrepancy can be observed because the lower shear stress level 
can be expected for small value of ~(the shear stress vanishes at the interface when ~ =- 0). This 
is again due to the inability of  the power law fluid to predict viscosity at a low shearing level. 

Although both the power law fluid and Carreau fluid predict the drag decrease of  most 
non-Newtonian fluid flows in multiple drop systems, the degree of drag reduction differs 
quantitatively. The predictions of  drag coefficient from these two models can differ by more than 
30% for q~ = 0.4, ~ = 0.1, 2 = 10 and n = 0.2. The Carreau model possesses all the features which 
time independent shear thinning fluids are known to exhibit. It describes the shear rate dependent 
viscosity for a variety of  materials over several orders of  magnitude of shear rates. So it appears 
to be most suitable among the generalized Newtonian fluid models and therefore provides more 
accurate predictions of  a real system. 

For  most shear thinning fluids, /~ is usually small and was neglected in previous studies of  the 
problems (Gummalam et  al., 1988; Jarzebski & Malinowski 1987a). Experimental results of  Park 
et  al. (1975) for polyvinylpyrrolidone solutions have indicated a range of 0.046-0.146 while Xu's  
(1988) experiments for polyacrylamide solutions have revealed a range of 0.005-0.05 for the values 
of/L The present study has shown that even though the value o f / / i s  small for most shear thinning 
fluids,/~ has a significant influence on the drag coefficient (see figure 2). Quantitatively, the values 
of  drag coefficient for fl = 0.0 and / / =  0.1 differ from each other by an order of  magnitude for 
@ = 0.4, and 2 = 10. The larger the value of ~, the larger the differences. 

C O N C L U D I N G  R E M A R K S  

The upper bounds of  the solutions based on the variational principles, as suggested by previous 
investigators, predict the drag coefficient and the mass transfer rate with a remarkable error. The 
reduction in the drag coefficient due to the pseudoplasticity of  the fluids is more significant for a 
larger value of  the holdup and that the shear thinning behavior of  the fluids results in a reduction 
in the holdup effect on the drag coefficient. There is very little influence of the pseudoplastic 
behavior of  the fluids on the mass transfer rate for the swarm of  drops when the viscosity ratio 
parameter  is small and the mass transfer rate is reduced by the pseudoplasticity of  the fluids when 
the viscosity ratio parameter  is large. The degree of the reduction in mass transfer rate due to the 
pseudoplastic behavior is more significant at high values of  holdup. The effects of  zero shear 
viscosity and infinite shear viscosity on the drag coefficient could have been underestimated in 
previous studies of  the problems by either choosing a simplified constitutive equation of power law 
fluid which is unable to predict both the zero shear viscosity and the infinite shear viscosity or 
neglecting the infinite shear viscosity from a more realistic fluid model for the mathematical 
simplicity. 
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